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OPTIMAL ESTIMATES OF THE COORDINATES OF SYSTEMS 
WITH A TIME LAG WITH RESPECT TO A SET OF CONTINUOUS AND 

DISCRETE OBSERVATIONS* 

V.B. KOLMANOVSKII and A.V. FROLOV 

Expressions for optimal estimates of coordinates of systems with a time 
lag when there are continuous and discrete measurements are established 
and investigated. The effect of the amount of lag on the quality of 
estimation is demonstrated as an example. The related problems of when 
there are only continuous measurements were considered previously /l, 2/. 

1. Formulation of the problem. Consider a dynamic system whose motion in the segment 
IO, Tl is described by a stochastic equation with initial conditions 

r' 0) = A (t) s (t -h,) + 01 (t) El' (t), 8 < t < T (1.1) 

x (s) = 0, s< 0; x (0) = 50 (1.2) 

For system (1.1) we carry out the following continuous Y 0) and discrete yi observations 
at specified instants of time ti 

Y w = g 0) x 0 - h) + (Jz (4 Ez’ (4, 0 < t < T 0.3) 

yi = fiix (tJ + ri&r 0 < ti < T, i=l, . . ., N; tl < t, < . . .< TV (1.4) 

In Eqs.(l.l)-(1.4) the phase vector xE& (where R, is an n-dimensional Euclidean 
space); the matrices A,al,g,a, with piecewise-continuous elements and thematrices pi and ri 
are specified; the time-lag constants h,,h>O; the Gaussian random quantities with zero 
expectation and unit covariation matrix are denoted by ci, and 5, and Ea are standard Wiener 
processes; the Gaussian random quantity x0 is such that Mx,, =O, Do=Mx~zo’. Here M is the 
sign of expectation, the prime is the sign of transposition, and D, is a specified positive- 
definite matrix. The random quantities &,&,x0, I;i are mutually independent. Finally, 
without loss of generality, it is assumed that y E R,, yi ER,. 

Note that consideration of the time lag in the channel of measurements (1.3) is caused 
by the finiteness of time necessary to carry out the observations and to work out their results. 

The need to consider the time lag in a measurement channel has been noted repeatedly in 
applied work (e.g. /3/j. The choice of the initial conditions in the form (1.2) indicates 

thatthemotionofthesystemisonlydescribedbyEqs.(l.l) for t>O. andnothingisknownregarding 
the system when t<O. In accordance with this, the continuous observations (1.3) that can 
be produced in the segment of time [O,h] cannot carry any data about the system either, which 
was reflected in the above assumptions. 

The problem consists of constructing an estimate m(T) - which is optimal in the mean- 
square sense - of the vector x(T), using the results of the observations (1.31, (1.4) in the 
segment IO, TI. It is known that m(T) is the conditional expectation x(T) under the conditions 

*Prikl.Matem.Mekhn.,50,4,544-550,1986 
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y (t), 0 < t < T, y pi), i = I, . . ., h'. The corresponding matrix of covariation of the conditional 
distribution 

D (I’) = 111 Lx (T) - m (T)l [z (2') - m (T)l’ 

Note that the problem of estimating the coordinates x(t) of a system whose motion is 
described by an equation of the form 

s’(t)=A,(t)s(t)+A(t)x(t--h,)+cr,(t)E,’(t) 

which is more common compared with (l-l), also reduces to the problem formulated above. 
For this it is sufficient to introduce new coordinates using the non-degenerate trans- 

formation z1 (t) = 2, (0, t)x (t), where z,(t,s) is the fundamental matrix of the system z' (t)= 

4, (t) r (t). At the same time xl(t) is described by an equation of the form (1.1). 
Below it is assumed that the matrices u, (t) us' (t) and riri' are non-degenerate for all 

t E IO, T1 and i = 1, . . ., N. In cases when the arguments of the above functions agree with t, 
they are sometimes omitted. 

The above problem when h = 0 (i.e. when there is no time lag in the channel of observa- 
tions) has been the subject of a number of analyses (e.g., /4/, which has an extensive 
bibliography). The case of arbitrary h> 01 was analysed only for continuous observations. 

2. Filtration. The method of constructing the functions m(T) and D(T)is based on 
reducing the estimation problem to one of the optimal control of a linear determinate system 
with a quadratic minimisable functional. In view of the Gaussian nature of the conditional 
distribution z(T) using the result of the observations (1.3), (1.4) the optimal estimate 
m(T) is represented in the form /5/ 

m (T) = f u (t) y(t) dt + 5 viyi (2.1) 
” i=l 

The square matrices u(t) and VI are to be determined from the minimum condition of the 
error of estimation. We shall use z(t, S) to denote the fundamental matrix of system (l.l), 
which is determined by the relations (I is the unit matrix) 

Then /6/ 

82 (t, s)lc% = A (t) 2 (t - h,, s), t > s, 2 (t, t) = 1 

a2 (t, s)/ds = -2 (t, s + h,) A (s + $), 2 (t, 7) = 0, t < z 

5 (t) = [ z (L s) 01 (s) dC1 (s) + 2 (t, 0) x0 (2.2) 
0 

The stochastic integrals encountered are understood in Ito's sense. It is convenient 
to assume 

u (t) = 0, g (t) = 0, A (t) = 0, t F IO, TI (2.3) 

Instead of y(t) and yi we shall substitute into (2.1) their expressions (1.3) and (1.4) 
and shall replace z(t) in the resulting relation in accordance with (2.2). Bearing in mind 
(2.31, we finally have 

T 

t(T)--m(T)=[Z(T,O)-5 u(t+h)g(t+h)Z(t,O)dt- 
Ll 

Using this relation, we will obtain 

Jflx(T)- m (T) Ia = Tr D (T) = Tr [a’ (0) Doa (0) _I- x2.4) 

i (U’(t)Ul(t)Ul’(t)U(t) + U'(t)U*(l)Ua'(t)"(t))dt + 5 Vitdi'Vi]=J 
0 i=1 

The determinate matrix a(t) is defined as the solution of the problem 

a’(t)=--‘(t+hl)a(t+hl)+g’(t+h)u(t+h)+ (2.5) 
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&p(t - ti) 
a@)=O, T>T# 

Thus, the matrices u(t)and vi in (2.1) must be 
(2.4) on the trajectories of system (2.5) under the 

The control u(t), O,<f<‘h does not affect the 
(2.4) in mind we have 

a(T)=Z 

determined by minimizing the functional 
conditions (2.3). 
behaviour of a(t); therefore bearing 

u (t) = 0, 0 < t <h (2.6) 

The discrete optimal control vi, and also the continuous control u(t), t>h, based on 
the dynamic programming method, are constructed in the same way as in /2/. At the same time 
it is found that 

L) (t) = P (t) (2.7) 

uf=(rn’)-‘BiCP(tf+O)a(ti+O)+ i Q(ti+O, z)a(ti--)dt] 
--d 

(2.8) 

The control u(t) has the form 

~(t)=(o~(t)%‘(@-zg’(t)[P(t-h)a(t-h)+ i Qft-h,s)a(t-z-h)&] 
-h, 

.12.9) 

T>t>h, u(t)=O, O<tQh, t>T 

The matrices P (t), Q ft, 7, R (t, 2, p)) for all 0 < t\< T, t + tt, -h, < 2, p < 0 satisfy the equations 

B (t - h) = 8' 0) (oa 0) a,' (W-l g (t) 12.10) 

p’ (t) = Q (t, 0) + 0' (t, 0) + us (4 0;' (t) - P (t)B (t) P(t) 

R (t, 0, r) - (8% + WT) Q (t, z) - P (t) B (t) Q (t, T) = 0 

(a/at + illc3a + Sp) R (t, T, p) + Q’ (t, z) 3 (t) Q (t, p) = 0 

At the jump points (i.e. when t = ti) the following relations hold: 

P (tt f 0) = P (bi - 0) - P (tt - 0) yi P tt* + 0) 

Q (tt -t 0, TF) = Q (tf - 0, Z) - P (ti - 0) yi Q ftl + 0, ~1 

R (4 -t 0, *, p) = R (ti - 0, ~7 p) - Q’ [tf - 0, T) YiQ (ti + 0, 7) 
yi = fii’ (r&‘)-’ pt 

(2.11) 

The boundary conditions for Eqs.(Z.lO), (2.11) have the form 

P (0) = Do, Q (0, d = R (0, T, P) = 0, -4 CT, P < 0 
A (t + 4) P (t) - Q’ (tl,- hJ = 0, 0 < t < T 

2A (t + hJ Q (t, T) - R ft, -&, 7) - R’ ft. z, -&) = 0 

(2.12) 

Thus, to construct the estimate m(T)and the covariation matrix D (T)we need: 
1) to solve problem (2.10)-(2.12), having defined P and Q; 
2) to solve problem (2.5) with the control I+ from (2.8) and the control u(t) from Eq. 

(2.9), into which the calculated matrices P and Q are substituted; 
3) to substitute P, Q, and a obtained into (2.8), (2.9), having thereby defined u(t) 

and vi; 
4) D(T) is now given by Eq.(2.7), and the estimate m(T) is given by Eq.(2.1) for the 

values of VI and u(t) obtained. 
We shall now consider cases in which the above filtration algorithm permits some 

simplifications. 

3. The case sI =O. Then the equations of motion (1.1) are determinate and we can write 
an explicit representation for the matrices P,Q and R. '(re shall define the matrices b(t) 
and P,(t) by means of the equations 

b' (t) = b (t - h,) A’ (t), 0 Q t Q T, b (0) = I, b (7) = 0, (3.1) 
z<O 

pl(t)=CSb(p)B(s)b’(r)ds +i:*21b0d~<b’(tJ+ ~l1-l. t J; ti (3.2) 
0 

PI (tj + 0) = [PI-’ ftt - 0) +*b’ (ti) yj b fti)l-1 

Then 
P (t) = b’ (t) P, (t) b (t), Q (t, 7) = b’ (t) P, (t) b’ (t - T) (3.3) 
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R (8, t, pf -= 6” (t - T) P, (t) b’ (t - p), -h z-c; T, f> .‘; o 

At the point h, of discontinuity of the derivative b' (t) the latter is determined by 
means of left-continuity. The matrix b(1) is easily calculated in explicit form by integrating 
Eq.(3.1) with respect to steps of length h,. The function P,(t) is considered to be left- 
continuous. 

The validity of the representation (3.3) is verified by directly substituting (3.3) into 
(2.10)-(2.12). This verification is made easier by the fact that on the grounds of (3.2) 

P; (t) = -P, (t) b (t) B (t) b’ (t), t # ti 

4. The case when h, = 0. Then Eqs.(l.l) will not contain a time lag. The expressions 
for m and D depend On whether the motion of the system is only described by Eqs.(l.l) when 

t>o, or these equations hold for all t> --h. We can obtain expressions for m and D when 
h, = 0 from the general relations of para.2. However the absence of a time lag in Eqs.(l.l) 
enables us to simplify the derivation of formulae for m and D. We shall first present them 
on the assumption that the motion of the system is described by Eqs.(l.l) for all t>----h, 
h, = 0 and only continuous observations are carried out. The initial condition has the form 
z(O) = x0. We will assume 'p (t) = z (t -hf. By virtue of Ito's formula and (1.1) we have 

m(O)=Z(---,0)x0+ i Z(-h,t)cl(t)&(t) (4.1) 

q' (t) = A (t - h) ‘p (t;; CT, (t - h) &’ (t - h) (4.2) 

Suppose ml(t) and &(t) are the conditional expectation and the covariation matrix of 
the vector q(t), provided that the vector g(t) = ~(~)~(~) f a,(f)gi (t) is observed in the 
segment IO, tl. Then /4/ 

rni 0) = Dr g (09e~'P IY 0) - gml @)I + A (t - h) ml (t) t4.3) 

D1’ (t) = A (t -h) D, + DIA’ (t - h) + [q (t - 

h) 0, (t - h)f-’ - D,g’ @so,‘)-%Dz 
(4.4) 

The initial conditions for the set of Eqs.(4.3), (4.4) follow from (4.1). Namely 

ml (0) = 2 (-h, 0) mo 

Dl(0) = Z(-h, O)D&‘(--h, 0)+ i Z(- h, t) 6% (t) ox’(t) 2’ (- h, t) dt 
--h 

Using I~O'S formula, we obtain 

(4.5) 

Calculating the conditional expectation from both sides of this equation under the 
condition that y(s), O<<sQt is measurable, we obtain 

m (1) = Z (t, t - h) ml (t) (4.6) 

In a similar way, calculating the conditional covariation we have 

1-h 
(4.7) 

Differentiating both sides of Eq.(4.6), (4.7) with respect to t, we obtain equations 
for m(t) and D(t)bearing in mind (4.31, (4.4). These equations are derived in exactly the 
same way in the general case of continuous and discrete observations (1.2), (1.3). It should 
merely be remembered that when there are discrete observations only the equation for D-’ (t) 
remains valid. This equation - by which we mean an integral identity - has the form (6(t) is 
the delta-function) 

D (0) = D,, 

t)‘-’ (6) + D-IA + AID-l - ii Pi’ (r&y pi& (t - ti) = 

Zr (t) - Z&D-1 - D-%ZI - D-l [q(t) ul’ (t) - &ZI&] D-l (t) 

ZI (t) = Z’ (t - h, t) g’ (t) (0s (t) as’ (t))-l g (t) Z (t - h. t) 

(4.8) 

t 
81 = s z (1, s) a1 (s) a’(s) Z’ (t, s) fib = &(t) 

L-h 

The initial condition i,(O)= D, for Eq. (4.8) follows from (4.51, (4.7). The equation 
for the estimate has the form 



m (t) - m. - jA(.+m(.$*- 2 D(tt+O)fi<(rtr~)-1 x 
i:tt<t 
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W) 

[Pi - Bim (ti - O)] = S (D (S) - S (Jl (-91) &) Z’ (& S - h) g’ (S) X 

(a9 (s) ui @))-I (y (s) -“g(s) Z (s Z s) m (s)) ds 

The last term on the left-hand side of (4.9) can be transformed in accordance with one 
of the following formulae (/7, 222/j: 

D (ti + 0) fit’ (rirt’)-l = [D (tt - 0)-l + &’ (rirt’)-l fJ]-’ pt (rir:)-l = 

D(ti - O)fiI [riri) + biD(ti - O)pi']-' 
(4.10) 

Suppose, finally, h, = 0, and the system begins its motion at the instant of time t= 0, 
but is only described by Eq.cl.1) when t> 0 with the initial condition (1.2). Then the 
equations of the optimal filter have the form (4.81, (4.9), in front of the right-hand side 
of which there is the common factor x(t-_h), where x(t)= 0 when tQ 0 and x(t)= 1 when 
t > 0. 

Note that Eqs.(Z.ll), (4.8) can be interpreted as a method of constructing solutions of 
the equations for P(t) and D(t),in which the jump points of the trajectory and control match. 

5. Extrapolation. The extrapolation problem consists of constructing the best estimate, 
in the mean-square sense, of the next coordinates of system (1.1) at the instant r> T using 
the results of the observations (1.3), (1.4) in the segment IO, Tl. The solution of this problem 
reduces to a solution of the problem of filtration, obtainedin Sect.2, in the following way. 
We shall introduce the function g,(t)=g(t) when 0 6 t < 2' and g,(t)= 0 when t>T. Consider 
the subsidiary problem of the filtration of the vector s(T)using the results of the measurements 
(1.3), (1.4) in the segment IO,zl, whilst we have g,(t) in (1.3) instead of g(t). The vector 
x(s),O<s <r is described by Eq.(l.l) with the initial conditions (1.2). In view of the 
independence of the random quantities x0, &, &, 51 the solution of the problem of extrapolation 
is the same as that of the subsidiary problem of filtration, established in Sect.2, where one 
should replace T everywhere by T m, and g(t) by g,(t). 

6. Interpolation. The problem of interpolation consists of an optimal estimate of the 
preceding state of the vector .z(ro), O,<z,< T using the results of the observations (1.3), 
(1.4) in the segment IO, Tl. The method of constructing the estimate m (ro) of the vector 
x(ro) remains the same as in para.2. At the same time it is found, like (2.11, that 

m@0)= f n(t)y(t)dt + ivi!/i -46.1) 

0 i=1 

The matrices u(t)and I+ which figure in (6.1) are determined from the condition of the 
minimum of the functional (2.4) on the trajectories of the controllable system 

a- (t) = - A’ (t t hl) a (t + hi) f g’ (t + h) u (t + h) + 46.2) 

a (s) G 0, s > T, a (z, - 0) = I + a (20 + 0) 46.3) 

System (6.2) does not greatly differ from system (2.5) by the equations of motion and 
the initial conditions, which is a consequence of the characteristics of the interpolation 
problem. 

Remarks. lo. The above shows that the characteristics of the specific estimation problem 
only appear in the form of equations of a dual controllable determinate system. We shall 
present them for the problem of estimating the vector z(%), 0 <rp< T using the changes Yi 
and Y(t),O(t< T, assuming that 

N 
2. (f) = x 4 (t) t(t -hi) + 81 (t) EI' (t), 0 <t< T, hi >,O 

*=I 

Y (0 = 5 gi W + V - Ti) + 6) V) t' V), u(O) SO, Ti>O 
i-1 

The discrete observations Yi satisfy Eqs.cl.4). The initial conditions for z have the 
form (1.2). The required estimate is determined using Eq.(2.1), in which the matrices * P) 
and vi are determined from the condition for a minimum of the functional (2.4) on the 
trajectories of the system 
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i=l 

The initial conditions for a(t) and the conditions of the jump when t=a, are specified 

by Eqs.(6.3). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

2O. The dependence of the error of the estimation D(T) on 
the amount of time lag h in the channel of measurements is 
interesting. It follows from the general relations of Sect.2 
that an increase in h can lead both to an increase in B(T), and 
to a reduction. As an example we shall present a graph of the 
dependence on h of the variance of the coordinate 4% of a free 
moving material point. The equations of motion (1.1) have the 
form 

The velocity is observed, i.e. y (9 == 23 (t - h) -+ v*Y t% 0 Q ta T* 
The expression for d,, is determined using Eq.(4.7). The 

dependence of 4, on h is represented in the figure, where curve 
1 corresponds to the values of the parameters 

and for curve 2 
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